Digital Filter Specifications

The magnitude response of a digital lowpass filter may be given as indicated below

Digital Filter Specifications

Filter specification parameters

- ω_{p} - passband edge frequency
- ω_{s} - stopband edge frequency
- δ_{p} - peak ripple value in the passband
- δ_{s} - peak ripple value in the stopband

Digital Filter Specifications

- Practical specifications are often given in terms of loss function (in dB)

$$
\mathrm{G}(\omega)=-20 \log _{10}\left|G\left(e^{j \omega}\right)\right|
$$

- Peak passband ripple

$$
\alpha_{p}=-20 \log _{10}\left(1-\delta_{p}\right) \mathrm{dB}
$$

- Minimum stopband attenuation

$$
\alpha_{s}=-20 \log _{10}\left(\delta_{s}\right) \mathrm{dB}
$$

Digital Filter Specifications

- In practice, passband edge frequency F_{p} and stopband edge frequency F_{s} are specified in Hz
- For digital filter design, normalized bandedge frequencies need to be computed from specifications in Hz using

$$
\begin{aligned}
& \omega_{p}=\frac{\Omega_{p}}{F_{T}}=\frac{2 \pi F_{p}}{F_{T}}=2 \pi F_{p} T \\
& \omega_{s}=\frac{\Omega_{s}}{F_{T}}=\frac{2 \pi F_{s}}{F_{T}}=2 \pi F_{s} T
\end{aligned}
$$

Digital Filter Specifications

- Example - Let

$$
\begin{array}{cr}
\mathrm{kHz}, & \mathrm{kHz}, \text { and } \\
F_{p}=7 & F_{s}=3
\end{array}
$$ kHz

- Then

$$
\begin{gathered}
F_{T}=25 \\
\omega_{p}=\frac{2 \pi\left(7 \times 10^{3}\right)}{25 \times 10^{3}}=0.56 \pi \\
\omega_{s}=\frac{2 \pi\left(3 \times 10^{3}\right)}{25 \times 10^{3}}=0.24 \pi
\end{gathered}
$$

Selection of Filter Type

- The transfer function $H(z)$ meeting the specifications must be a causal transfer function
- For IIR real digital filter the transfer function is a real rational function of

$$
H(z)=\frac{p_{0}+p_{1} z^{-1}+p_{2} z^{-2}+z^{-1}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+d_{2} z^{-2}+\cdots+d_{N} z^{-N}}
$$

- $H(z)$ must be stable and of lowest order N or M for reduced computational complexity

Selection of Filter Type

- FIR real digital filter transfer function is a polynomial in $z^{-1}(\operatorname{order} N)$ with real coefficients

$$
H(z)=\sum_{n=0}^{N} h[n] z^{-n}
$$

- For reduced computational complexity, degree N of $H(z)$ must be as small as possible
- If a linear phase is desired then we must have:
- (More on this later)

$$
h[n]= \pm h[N-n]
$$

